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The plane problem of the theory  of elast ici ty is considered.  It is assumed that in the neigh- 
borhood of the tip of an a rb i t ra r i ly  moving c rack  the s t r e s s e s  have a singulari ty of order  
r-l//2. On this assumption a general  express ion is obtained for the distribution of the s t r e s s -  
tensor  components in the given neighborhood. This distribution is determined by the two 
pa rame te r s  N and Po In the case of s t r e s s e s  symmet r i ca l  about the line of the c rack  (P = 0) 
the angular distribution does not depend on the intensity coefficient N and is determined only 
by the velocity of the c rack  at the given instant and the t r ansve r se  and longitudinal wave 
velocities~ On the same assumptions it is shown that the energy condition obtained by Craggs 
for the par t icular  case of s teady-s ta te  motion is a necessa ry  condition for the a rb i t r a r i ly  
moving crack.  Irwin [1] and Cherepanov [2] have studied these questions in the quas i -s ta t ic  
approximation. 

1. Singularity at the end of a moving crack.  In the static case a s t r e ss  singularity of order  r-~/2, 
where r is the distance from the c rack  tip, is known to exist at the end of a crack.  A s imi lar  resu l t  has 
been obtained in a number of dynamic problems.  Assuming a s ingulari ty of the same order ,  we seek the 
angular distribution of the s t r e s s e s  around the tip of an a rb i t r a r i ly  moving crack.  

We descr ibe  the motion by means of the potentials �9 and ~,, which sat isfy the equation 

c12 AcI) = a~eP / at ~, c22AW = a~F / at 2 (1.1) 

H e r e ,  c 1 a n d  c x a r e  t h e  l o n g i t u d i n a l  a n d  t r a n s v e r s e  w a v e  v e l o c i t i e s .  W e  f i n d  t h e  p o t e n t i a l s  in  t h e  

neighborhood of the c rack  tip in the following form: 

--- ] f [ x - - l ( t ) ]~+y  2, ~}=arctg xZ1(t) r (1.2) 

Here,  x, y is a coordinate sys tem with axis directed along the crack;  1 (t) is the crack tip coordinate.  
We introduce the var iable  X = x - l  (t) ; then 

oq) on9 
ot  - -  o x  ( -  l') -1- o (r v*) 

ot~ - -  b--2 ~ +  l '~+o (r - /~ )  

(1o3) 

Here,  a dot denotes a derivative with respec t  to time. Substituting (1.2) into (1.1) and using (1.3), we 
obtain 

l l'2\ 0~0 020 - - ~ )  y~-~+-gb~-y~ = o ( #  I') 

t - c7) ~-~ + o--U = o (#/2) 
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Neglecting lower -o rde r  te rms,  we a r r ive  at a system that exactly coincides with the sys tem obtained 
in the problem of the s teady-s ta te  propagation of a c rack  at constant velocity V = l" (Craggs [3]) :  

( w~o~a, a~a, ( w ) o ~  o2v 
~ - ~ ) ~ + ~  =0,  ~ - ~  ~-~ + -~z~ = 0 (1.4) 

Following Craggs, we introduce 

z~ = x + i (t - -  v ~ / c~*)'/'V, z~ = X + i (t - -  ~ I c~)'l~y 

The solution of sys tem (1.4) satisfying conditions (1.2) has the form: 

(1.5) 

(1.) = Re. [alZl :~]~ ~- ia2z1%] 
= Re. [bx% V~ -}- ibm% '/'] 

(1.6) 

Here,  al, a2, b 1 and b 2 are  constants.  Two of these constants are  found from the boundary conditions 
at the edges of the crack.  Confining ourselves  to the case of finite external forces in the region of the 
c rack  tip, we require  that 

%u = (~xv = 0 at ~ = n ( 1 o 7 )  

As the two remaining pa rame te r s  we select  the intensity coefficients for ~yy and Crxy on the axis of 
the c rack  approaching from the outside: 

% ~ = N / ~ F Z ,  a ~ = p / ~ K z  at ~ 0  ( 1 . 8 )  

To wri te  relat ions (1.7) and (1.8) in t e r m s  of potentials (1.6), we used Craggs express ions  for the 
s t r e s s - t e n s o r  components 

I v~\V.- o2 x I E~o2v (1.9) 

Here, 

02(0 02X 3 
Ox2 + ~ ~ = - 4 -  (a~'l ~/' + i ~  '/~) 

0 2 ~  O2K _ 3 , b  z -~/, ib~z~'/9 
(1.10) 

where ~ is the second Lam6 constant. 

These formulas  are  obtained by substituting into Hooke 's  law the displacements  expressed  in t e r m s  
of potentials (1.6), by means of Eqs. (1.4). 

Substituting (1.9), (1.10) in (1.7), (1.8) and solving the sys tem l inear in al ,  a2, bl,  and b 2 thus ob- 

tained, we find 

4 N(2--V 2/c~ 2) 4 P(2--V e/c2 2) 
%---- 3 gp, D ( V )  ' b l -  3 np, D ( V )  

8 P (t - -  V ~ I c~') '1~ 8 N (1 - -  V ~ / c1~) 'I~ 
~ = -  3 :~D (V) b~= 3 ~ b - ~  

(1.11) 

Here  

D (V) = 4 ( t - -V  ~/cI~)  1 s  2 /c2~)  ' l * I  (2--V "2/%~)2 

Combining (1.9), (1.10), and (1.11), we obtain the following express ions  for  the s t r e s s  tensor  c o m -  
ponents: 

508 



~l~D(V)~xx=r-% {(2 V~ V2' (t V2 sin2t~')'I'IN(2 V~ -- ~s cos - -  -~. + ~ - - 2 ~ )  , --cl ~ 

.( v~'io. ~C --.-~)'i~( V'~sin~o)',-'/~r / w '/~ ~ . . / 2 x t ' - ?  ) ~_ / v:, 

�9 cz  ~ , 2 / 

v~ 'x-v, r v~ k~ 

V~k '1~ ~ l ]  (1 V2]'I' V2 ' -'1' 

Xn ~ arc tg ( t --V~/o~) 'I~ tg~ (n ~ 1,2) 

It should be noted that in the case of s t r e s s e s  symmet r i ca l  about the line of the c rack  (P = 0) the 
quantity N enters  into (1.12) as a coefficient. Thus, the angular s t r e ss  distribution does not depend on the 
intensity coefficient and has the same form for all motions of the crack.  

Naturally, it coincides with the resul ts  obtained in [3-6]. The proper ty  obtained makes it possible to 
t ransfer  the resu l t s  of the investigations of var ious  authors relat ing to par t icular  problems to an a rb i t r a r i ly  
moving crack  with 1 ) = 0. This includes the possibility, detected by Yoffe [6], of branching of the c rack  to a 
cer ta in  cr i t ical  velocity. Hence it follows that the form of the i s . c h r o m e s  calculated by Baker [5] in his 
problem is common to all problems with a symmet r i ca l  s t r e ss  distribution. 

2. Energy condition at the e n d o f  a crack.  Following Cherepanov [2], we write the energy conse r -  
vation equation for the process  of deformation of a perfect ly  elastic body with a developing crack.  We 
assume that an energy T is required  for the formation of unit length of the crack.  The value of T is de te r -  
mined by the physical  proper t ies  of the body and, general ly  speaking, may be a function of the pa rame te r s  
of motion of the crack.  We isolate around the end of the c rack  at t ime t o a c i rcu la r  region G of radius 
with boundary % For  the region of the body outside 7 conservat ion of energy is guaranteed by the equations 
of motion of a perfect ly  elastic body. For  the region G 

~ J ~ x - ~ - + . ~  0t j dx+ ~.xn ~ - + Y ~ - ) a ~ =  ~ ~'~w * 7  b ~ r )  + \-n-) ])dc + 2zT 
0 7 

Here,  Px and Py denote the vec tor  of the external forces  applied to the edges of the c rack  f romwithin  
the crack;  u x and Uy represen t  the displacement  vector;  X n and Yn represen t  the vec tor  of the elast ic forces  
at the boundary; W is the elast ic  potential; and p is density. 

The f i rs t  t e rm in this equation is the intensity of the external  forces  applied in the c rack  itself; the 
second t e rm is the intensity of the elast ic  forces  at the boundary of the region Y; the third t e rm is the ra te  
of change of elast ic  and kinetic energy in the region G; and the fourth t e rm is the energy expended on crack  
formation per unit time. 

For  a sufficiently small  region G it is possible to use the form of the singulari ty at the tip of an a rb i -  
t r a r i l y  moving crack  found in the preceding section; in this case the f i rs t  t e rm in (2.1) can be neglected (as 
the region G decreases  without bound, it tends to zero). 

After making all the calculations,  we obtain 

C2 2 (2.2) 

This express ion is the analog of Griff i th 's  energy condition [7] for a nonstationary moving crack.  The 
same express ion  was obtained in Craggs '  par t icular  problem [3]. Instead of T we introduce the pa ramete r  
K frequently used in the theory  of brit t le f rac ture :  

K=lr2~l lT / ( t  --v) (v iS Poison's ratio) 
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The  g r a p h  N2(V)/K 2 for  P = 0 and p = 0.25 i s  p r e s e n t e d  in F ig .  1, w h e r e  c R is  the  R a y l e i g h  wave  v e -  
l oc i ty .  I t  i s  c l e a r  f r o m  the g r a p h  tha t  a s  V - - 0  cond i t ion  (2.2) goes  o v e r  into the  s t a t i c  cond i t i on  fo r  the  
e q u i l i b r i u m  c r a c k  [8] N = K. 

Equa t ion  (2.2) can  be u sed  for  so lv ing  the fo l lowing p r o b l e m .  

At  the  i n i t i a l  i n s t an t  e x t e r n a l  l o a d s  a r e  a pp l i e d  to  a body with  a s t a t i o n a r y  c r a c k :  i t  i s  r e q u i r e d  to 
f ind the  m o t i o n  of  the  c r a c k .  

The  p r o b l e m  is  s o l v e d  in two s t a g e s :  

1) We d e t e r m i n e  the  p a r a m e t e r s  N and P for  the  g iven  e x t e r n a l  l o a d s  and an a r b i t r a r y  law of m o t i o n  
of  a cu t  co inc id ing  a t  the  i n i t i a l  i n s t an t  wi th  the  s t a t i o n a r y  c r a c k .  

2) By  m e a n s  of Eq. (2.2) f r o m  the e n t i r e  s e t  of t r a j e c t o r i e s  we s e l e c t  t ha t  which  c o r r e s p o n d s  to  the  
m o t i o n  of  the  c r a c k .  

Unfo r tuna t e ly ,  even  for  v e r y  s i m p l e  r e g i o n s  and t y p e s  of  l o a d s  the  so lu t ion  of the  f i r s t  p r o b l e m  p r e -  
s e n t s  c o n s i d e r a b l e  d i f f i cu l t i e s .  The  l i t e r a t u r e  on the n o n s t e a d y  m o t i o n  of  c r a c k s  i n c l u d e s  on ly  the  w o r k  of 
B r o b e r g  [4] on the s e l f - s i m i l a r  p r o p a g a t i o n  of  a c r a c k  f r o m  z e r o  at  c o n s t a n t  v e l o c i t y  and tha t  of  B a k e r  [5] 
on the  m o t i o n  at  cons t an t  v e l o c i t y  of a s e m i - i n f i n i t e  c r a c k  i n i t i a l l y  a t  r e s t .  B r o b e r g ' s  r e s u l t  can  be u sed  
fo r  the  a p p r o x i m a t e  so lu t ion  of  the  p r o b l e m  p o s e d  above  in the  c a s e  of a l i n e a r  i s o l a t e d  c r a c k  in an in f in i te  
s p a c e .  At  the  i n i t i a l  i n s t an t  l e t  a p r e s s u r e  p -> P0, w h e r e  P0 i s  the  c r i t i c a l  p r e s s u r e  c o r r e s p o n d i n g  to the  
e q u i l i b r i u m  s t a t e ,  deve lop  in the  c r a c k .  At  t > 0 the  p a r a m e t e r  N i n c r e a s e s  and when i t  b e c o m e s  equa l  to 
K, the  c r a c k  s t a r t s  to move .  At  t i m e  t l e t  i t  have  the  d i m e n s i o n  1 and v e l o c i t y  V. We a s s u m e  tha t  a t  t h i s  
i n s t a n t  N i s  the  s a m e  a s  for  a B r o b e r g  c r a c k  deve lop ing  f r o m  z e r o  at  v e l o c i t y  V to a l ength  l under  the  
a c t i o n  of the  s a m e  l o a d  p: 

Q~ ~[ l 01~ D(V) 

~ (t --  ~) V e~ 
Q = p -  j ( ~ )  , ~ = ~ ,  k = ~  ( 2 . 3 )  

J (~) ~-~ [(t - -  4k ~) ~ + 4/d] K ( ] / 1 -- ~) -- [~-2 [~4 _ 4k2 (1 + k 2) ~ + S/d] E ( 1 / ~ )  - -  

_ ~k2 (l  - ~ )  g ( V ~ +  8k,~-2 ( i  - -  ~ )  E ( V i --  (~ / k)~) 

w h e r e  K (x), E (x) a r e  c o m p l e t e  e l l i p t i c  i n t e g r a l s  of the  f i r s t  and s e c o n d  k inds .  

In  t h i s  p r o b l e m  the  p a r a m e t e r  t ) i s  equa l  to z e r o .  

Subs t i tu t ing  (1.3) into (2.2),  we ob ta in  the  r e l a t i o n  V(I) ,  whose  g r a p h  i s  p r e s e n t e d  in Fig .  2 for  v a r i o u s  
v a l u e s  of  p. C u r v e s  1, 2, and 3 c o r r e s p o n d  to p = P0, P = 2P0, P = 3p0. The  e n e r g y  of c r a c k  f o r m a t i o n  T i s  
a s s u m e d  cons t an t .  With  r e g a r d  to the  c u r v e  V(/)  we know a p r i o r i  tha t  i t  beg ins  a t  the  po in t  (10, 0) c o r -  
r e s p o n d i n g  to the  i n i t i a l  p o s i t i o n  of t he  c r a c k  and t ends  t o w a r d  the s a m e  a s y m p t o t e  V = CR. C l e a r l y ,  the  
g r e a t e s t  d e v i a t i o n  f r o m  the e x a c t  s o l u t i o n  wi l l  o c c u r  in the  i n i t i a l  s t a g e  of mot ion ,  w h e r e  the  d i s c r e p a n c y  
be tween  the  i n i t i a l  da t a  of  the  p r o b l e m  p o s e d  and the  B r o b e r g  p r o b l e m  is  g r e a t e s t  and  w h e r e ,  m o r e o v e r ,  the  
m a x i m u m  of  the  a c c e l e r a t i o n  dV/d t ,  w h o s e  e f f ec t  i s  not t a k e n  into accoun t  in the g iven  m o d e l ,  i s  l oca t ed .  
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