ENERGY CONDITION AT THE END OF A
NONSTATIONARY CRACK

E. N. Sher

The plane problem of the theory of elasticity is considered. It is assumed that in the neigh-
borhood of the tip of an arbitrarily moving crack the stresses have a singularity of order
r=¥2, On this ass umption a general expression is obtained for the distribution of the stress-
tensor components in the given neighborhood. This distribution is determined by the two
parameters N and P. In the case of stresses symmetrical about the line of the crack (P=0)
the angular distribution does not depend on the intensity coefficient N and is determinedonly
by the velocity of the crack at the given instant and the transverse and longitudinal wave
velocities, On the same assumptions it is shown that the energy condition obtained by Craggs
for the particular case of steady-state motion is a necessary condition for the arbitrarily
moving crack. Irwin [1] and Cherepanov [2] have studied these questions in the quasi-static
approximation,

1. Singularity at the end of a moving crack. In the static case a stress singularity of order r"/z,
where r is the distance from the crack tip, is known to exist at the end of a crack. A similar result has
been obtained in a number of dynamic problems. Assuming a singularity of the same order, we seek the
angular distribution of the stresses around the tip of an arbitrarily moving crack.

We describe the motion by means of the potentials ® and ¥, which satisfy the equation
c?AD = 22D [ 882, cPAY = &V [ ot (1.1)

Here, c; and c, are the longitudinal and transverse wave velocities. We find the potentials in the
neighborhood of the crack tip in the following form:

D= r"g (8,0, ¥ =r"p @, 1)

r=VE—IOF+s OS=arctg ;:le (1.2)

Here, X, y is a coordinate system with axis directed along the crack; I(t) is the crack tip coordinate.
We introduce the variable X = x—[ (1); then
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7 = ax () +o™ (L.3)
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Here, a dot denotes a derivative with respect to time, Substituting (1.2) into (1.1) and using (1.3), we
obtain
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Neglecting lower-order terms, we arrive at a system that exactly coincides with the system obtained
in the problem of the steady-state propagation of a erack at constant velocity V =1° (Craggs [3]):.

VR 820 9D G A
(-S)mmtar =0 (1-G)tz=o (1.4)
Following Craggs, we introduce
n=X+ it —v2 ey, =X+ i~V %y (1.5)
The solution of system (1.4) satisfying conditions (1.2) has the form:

@ = Re [z + iayz]
Y = Re [biz, " + ibyz,] (1.6)

Here, a,, ay, by and b, are constants. Two of these constants are found from the boundary conditions
at the edges of the crack. Confining ourselves to the case of finite external forces in the region of the
crack tip, we require that

Oy =0Ogy=0at O==x (1.7)

As the two remaining parameters we select the intensity coefficients for Tyy and Oyy ON the axis of
the crack approaching from the outside:

ey =N/[aVX, oy=P/aVX at 4=20 (1.8)

To write relations (1.7) and (1.8) in terms of potentials (1.6), we used Craggs expressions for the
stress-tensor components

e V"*) e 2( Vz\llf K
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(brzy " + ibyz; )

where p is the second Lamé constant.

These formulas are obtained by substituting into Hooke's law the displacements expressed in terms
of potentials (1.6) , by means of Egs. (1.4).

Substituting (1.9), (1.10) in (1.7), (1.8) and solving the system linear in a;, a,, by, and b, thus ob-
tained, we find

____{{N(Z—Vz/caz) 4 P2—TV?/c?)
A=FT D) 0 T3 T b ) (1.11)
_8- PA—V?2/ 022)‘/2 8 N(1— Vz,:clz)‘/z
RETF T D () 2=T3 T apD (V)

Here
D@y="4(—V2/exP (@ —V2 s _ (2 V2] 2P

Combining (1.9), (1.10), and (1.11), we obtain the following expressions for the stress tensor com-
ponents:
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It should be noted that in the case of stresses symmetrical about the line of the crack (P = 0) the
quantity N enters into (1.12) as a coefficient. Thus, the angular stress distribution does not depend on the
intensity coefficient and has the same form for all motions of the crack,

Naturally, it coincides with the results obtained in [3-6]. The property obtained makes it possible to
transfer the results of the investigations of various authors relating to particular problems to an arbitrarily
moving crack with P = 0, This includes the possibility, detected by Yoffe [6], of branching of the crack to a
certain critical velocity. Hence it follows that the form of the isochromes calculated by Baker {5] in his
problem is common to all problems with a symmetrical stress distribution.

2. Energy condition at the end of a crack. Following Cherepanov [2], we write the energy conser-
vation equation for the process of deformation of a perfectly elastic body with a developing crack. We
assume that an energy T is required for the formation of unit length of the crack. The value of T is deter-
mined by the physical properties of the body and, generally speaking, may be a function of the parameters
of motion of the crack. We isolate around the end of the crack at time t; a circular region G of radius ¢
with boundary y. For the region of the body outside vy conservation of energy is guaranteedby the equations
of motion of a perfectly elastic body. For the region G

loen B o S e Al £ (G < s O

Here, Py and Py denote the vector of the external forces applied to the edges of the crack from within
the crack; uy and ug represent the displacement vector; X, and Y, represent the vector ofthe elastic forces
at the boundary; W is the elastic potential; and p is density.

The first term in this equation is the intensity of the external forces applied in the crack itself; the
second term is the intensity of the elastic forces at the boundary of the region y; the third term is the rate
of change of elastic and kinetic energy in the region G; and the fourth term is the energy expended on crack
formation per unit time,

For a sufficiently small region G it is possible to use the form of the singularity at the tip of an arbi-
trarily moving crack found in the preceding section; in this case the first term in (2.1) can be neglected (as
the region G decreases without bound, it tends to zero).

After making all the calculations, we obtain
1% 1 VZ\ /2 2
N <‘1 — 5;2) + P2 ( 2—2) —=2pD (V) 7 (2.2)

This expression is the analog of Griffith's energy condition [7] for a nonstationary moving crack. The
same expression was obtained in Craggs' particular problem [3]. Instead of T we introduce the parameter
K frequently used in the theory of brittle fracture:

E=VZmuT (1 —v) (v is Poisson's ratio)
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The graph N*(V)/K? for P = 0 and v = 0.25 is presented in Fig. 1, where cR is the Rayleigh wave ve-
locity. It is clear from the graph that as V—0 condition (2.2) goes over into the static condition for the
equilibrium crack [8] N = K,

Equation (2.2) can be used for solving the following problem.

At the initial instant external loads are applied to a body with a stationary crack: it is required to
find the motion of the crack.

The problem is solved in two stages:

1) We determine the parameters N and P for the given external loads and an arbitrary law of motion
of a cut coinciding at the initial instant with the stationary crack.

2) By means of Eq. (2.2) from the entire set of trajectories we select that which corresponds to the
motion of the crack.

Unfortunately, even for very simple regions and types of loads the solution of the first problem pre-
sents considerable difficulties. The literature on the nonsteady motion of cracks includes only the work of
Broberg [4] on the self-similar propagation of a crack from zero at constant velocity and that of Baker [5]
on the motion at constant velocity of a semi-infinite crack initially at rest. Broberg's result can be used
for the approximate solution of the problem posed above in the case of a linear isolated crack in an infinite
space. At the initial instant let a pressure p = p;, where py is the critical pressure corresponding to the
equilibrium state, develop in the crack. Att > 0 the parameter N increases and when it becomes equal fo
K, the crack starts to move. At time t let it have the dimension [ and velocity V. We assume that at this
instant N is the same as for a Broberg crack developing from zero at velocity V to a length [ under the
action of the same load p:

Qn ( gAY D (V)
N = Vi co? %o (—-—‘———1 ey 012)1/2

g2 (1—8% v ¢
Q=p—J(B) s B’——-a, k——:c“i (203)

T (B) = (1 — &) B 4] K (VT—F%) — B2 Bt — 4k (1 + k)2 + 8] E(VI—PF) —
— 4 —B) K (VI—@TRP+ 8137 (1 —B) E(VI— B/ 4P

where K (x), E (x) are complete elliptic integrals of the first and second kinds.
In this problem the parameter P is equal to zero.

Substituting (1.3) into (2.2}, we obtain the relation V{l), whose graph is presented in Fig. 2 for various
values of p. Curves 1, 2, and 3 correspond to p = py, p = 2p;, P = 3p;. The energy of crack formation T is
assumed constant. With regard to the curve V(I) we know a priori that it begins at the point (I, 0) cor-
responding to the initial position of the crack and tends toward the same asymptote V = cp. Clearly, the
greatest deviation from the exact solution will occur in the initial stage of motion, where the discrepancy
between the initial data of the problem posed and the Broberg problem is greatest and where, moreover, the
maximum of the acceleration dV/dt, whose effect is not taken into account in the given model, is located.
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